Scalable Teaching and Learning via Intelligent User Interfaces

Speaker:  Xiangmin Fan – Beijing, China
Topic(s):  Human Computer Interaction

Abstract

The increasing demand for higher education and the educational budget cuts lead to large class sizes. Learning at scale is also the norm in Massive Open Online Courses (MOOCs). While it seems cost-effective, the massive scale of class challenges the adoption of proven pedagogical approaches and practices that work well in small classes, especially those that emphasize interactivity, active learning, and personalized learning. As a result, the standard teaching approach in today’s large classes is still lectured-based and teacher-centric, with limited active learning activities, and with relatively low teaching and learning effectiveness.

In this lecture, I will introduce some explorations on using Intelligent User Interfaces (IUIs) to facilitate the efficient and effective adoption of the tried-and-true pedagogies at scale. The first system is MindMiner, an instructor-side data exploration and visualization system for peer review understanding. MindMiner helps instructors externalize and quantify their subjective domain knowledge, interactively make sense of student peer review data, and improve data exploration efficiency via distance metric learning. MindMiner also helps instructors generate customized feedback to students at scale. The second work, BayesHeart, is a probabilistic approach for implicit heart rate monitoring on smartphones. When integrated with MOOC mobile clients, BayesHeart can capture learners’ heart rates implicitly when they watch videos. Such information is the foundation of learner attention/affect modeling, which enables a ‘sensorless’ and scalable feedback channel from students to instructors. I’ll also introduce CourseMIRROR, an intelligent mobile system integrated with Natural Language Processing (NLP) techniques that enables scalable reflection prompts in large classrooms. CourseMIRROR 1) automatically reminds and collects students’ in-situ written reflections after each lecture; 2) continuously monitors the quality of a student’s reflection at composition time and generates helpful feedback to scaffold reflection writing; 3) summarizes the reflections and presents the most significant ones to both instructors and students. 

About this Lecture

Number of Slides:  65
Duration:  50 minutes
Languages Available:  English
Last Updated: 

Request this Lecture

To request this particular lecture, please complete this online form.

Request a Tour

To request a tour with this speaker, please complete this online form.

All requests will be sent to ACM headquarters for review.