Computer vision in the study of art: New rigorous approaches to the study of paintings and drawings

Speaker:  David G. Stork – Sunnyvale, CA, United States
Topic(s):  Graphics and Computer-Aided Design

Abstract

New rigorous computer algorithms have been used to shed light on a number of recent controversies in the study of art. For example, illumination estimation and shape-from-shading methods developed for robot vision and digital photograph forensics can reveal the accuracy and the working methods of masters such as Jan van Eyck and Caravaggio. Computer box-counting methods for estimating fractal dimension have been used in authentication studies of paintings attributed to Jackson Pollock. Computer wavelet analysis has been used for attribution of the contributors in Perugino's Holy Family and works of Vincent van Gogh. Computer methods can dewarp the images depicted in convex mirrors depicted in famous paintings such as Jan van Eyck's Arnolfini portrait to reveal new views into artists' studios and shed light on their working methods. New principled, rigorous methods for estimating perspective transformations outperform traditional and ad hoc methods and yield new insights into the working methods of Renaissance masters. Sophisticated computer graphics recreations of tableaus allow us to explore "what if" scenarios, and reveal the lighting and working methods of masters such as Caravaggio.

How do these computer methods work? What can computers reveal about images that even the best-trained connoisseurs, art historians and artist cannot? How much more powerful and revealing will these methods become? In short, how is the "hard humanities" field of computer image analysis of art changing our understanding of paintings and drawings?

This profusely illustrate lecture for scholars interested in computer vision, pattern recognition and image analysis will include works by Jackson Pollock, Vincent van Gogh, Jan van Eyck, Hans Memling, Lorenzo Lotto, and several others. You may never see paintings the same way again.

About this Lecture

Number of Slides:  80
Duration:  50 minutes
Languages Available:  English
Last Updated: 

Request this Lecture

To request this particular lecture, please complete this online form.

Request a Tour

To request a tour with this speaker, please complete this online form.

All requests will be sent to ACM headquarters for review.