Cellular Models in Buildings to study the indoor spread of COVID-19

Speaker:  Gabriel Wainer – Ottawa, ON, Canada
Topic(s):  Applied Computing


Simulation models based on the traditional Susceptible-Infectious-Recovered (SIR) equations have been used to predict the pandemic dynamics. These models are being used at present to predict the spread of the disease in most countries worldwide. Studies of COVID-19 are based on theoretical methods for infectious disease dynamics, which show how the disease spreads. The original model has been used since 1927, and it classifies the individuals involved in the transmission of the disease into those that are Susceptible to the virus, those who are Infectious and finally those who have Recovered. The SIR model was extended and adapted numerous times to study the progression of other diseases and advanced new techniques. For instance, modern models include equations to represent Exposed individuals (SEIR model). More recent advances defined for modeling the SARS epidemics included behavior for the latency of the disease, and the effect of quarantines. Similarly,  studies have investigated the effects of vaccination and isolation. These advanced models use network dynamics, ordinary differential equations, finite equation theory, and other theoretical studies on infectious diseases. Although these theoretical methods are useful to define the theory of disease, sometimes they are difficult to apply in practice.
As we have seen in the past few months, these methods, based on differential equations, are useful to predict the number of infected individuals, and to devise different global policies to control the pandemic. Nevertheless, these methods cannot be easily adapted to include newly available information on the disease, or to combine them with real world data on demand. Consequently, large teams of experts need to work together on models of the disease and their simulations, provide results with limited precision. Another major limitation of the theoretical models under use is the inability for mixing the results of the mathematical models with visualization tools and advanced graphical interfaces (including Geographical Information Systems – GIS -, Building Information Models – BIM -, and spatial diagrams). Such visualization tools are normally in high demand for better analysis and decision-making. 
We will introduce the main characteristics of the Cell-DEVS formalism and will show how to model complex cell spaces using Cell-DEVS with application to COVID-19. We will present different examples of application for simulation of the spread of disease and discuss open research issues in this area. We will then focus on simple models of SIR applied to COVID-19 and will show how to include the models of spread of disease at a geographical level, as well as discussing the definition of models for indoor spread using integration of BIM software and GIS.

About this Lecture

Number of Slides:  40
Duration:  40 - 120 minutes
Languages Available:  English, Spanish
Last Updated: 

Request this Lecture

To request this particular lecture, please complete this online form.

Request a Tour

To request a tour with this speaker, please complete this online form.

All requests will be sent to ACM headquarters for review.